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This paper presents a new, rigorous approach for the nonparametric determination of catalytic 
reactivity distributions from in situ kinetic information obtained using steady-state isotopic transient 
kinetic analysis (SSITKA). The method is based on a constrained, standard Tikhonov regularization 
of Fredholm integral equations of the first kind. Results of the validation and application of this 
method for the analysis of synthetic and real (ruthenium-catalyzed CO hydrogenation) data are 
given. The method was compared to another nonparametric one that is based on an inverse Laplace 
transformation introduced by M. de Pontes, G. H. Yokomizo, and A. T. Bell (J. Catal. 104, 147 
(1987)) and was found to be less subjective and more exact, but computationally more demanding. 
For the new method, the effects of measurement noise and incorrect background selection on the 
recovery of reactivity distributions were also evaluated. It was shown that the new method could 
faithfully recover reactivity distributions even when reasonably small amounts of random noise 
were present. Similar recovery tests also showed that proper background selection would be critical 
for the determination of reliable reactivity spectra. © 1992 Academic Press, Inc. 

1. INTRODUCTION 

Steady-state isotopic transient kinetic 
analysis (SSITKA) developed in large part 
by Happel (I) and Biloen (2) is beginning to 
be routinely applied in catalysis (3-9). In 
this method only the isotopic concentration 
of the catalyst's environment is changed, so 
that, in the absence of isotope effects, the 
ongoing steady-state reaction and the popu- 
lations of reaction intermediates on the cata- 
lyst surface are not disturbed. Other tran- 
sient methods (10-13) do not guarantee this 
preservation of the steady state. Thus, using 
these latter methods it is sometimes not 
clear whether the actual transient kinetic 
response has been obscured or complicated 
by extraneous phenomena, such as changes 
in surface coverage, induced by changes in 
pressure and/or flow rates. They are there- 
fore not as suitable for quantifying steady- 
state kinetic behavior, even though they 
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may still reveal important mechanistic infor- 
mation. 

Depending on the reaction system under 
consideration, the analysis of transient re- 
sponses to step changes in the isotopic con- 
tent of the reaction feed varies from being 
rather complex (e.g., Fischer-Tropsch syn- 
thesis) to relatively straightforward. For ir- 
reversible, first-order reactions such as the 
methanation reaction, Happel et al. (14) and 
Biloen et al. (15) showed that the steady- 
state reaction rate can be expressed as 

R~ = Nk, (1) 

where N is the abundance in surface reac- 
tion intermediates, while their mean reactiv- 
ity, k, turns out to be the reciprocal of the 
integrated normalized response (i.e., the re- 
sponse time) to the isotopic step change; 
this integrated value is itself equal to the 
surface residence time of the isotopically 
marked element in the species being traced. 
Such data analysis, sometimes with addi- 
tional assumptions, has been applied often 
to steady-state isotopic transients to arrive 
at coverages and average lifetimes of sur- 
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face intermediates for a number of reactions 
(3-9). 

For isotopic transient kinetic studies of 
the methanation reaction, Biloen (2) empha- 
sized that the dynamic behavior of the reac- 
tion rate of the labeled reactant is 

R(t) = Nke  -kt (2) 

provided that the reaction steady state is 
not disturbed and the reactor is well-mixed. 
Based on Eq. (2), Scott and Phillips (16, 17) 
developed a six-parameter model to arrive 
at reactivity distributions for methanation in 
stopped-flow chromatography by summa- 
tion of the activity of all the parallel, inde- 
pendent methanation sites; that is, 

z ¢  

F(t) = R(t ) /N = fo ke-ktf(k) dk, (3) 

wheref(k) is the reactivity distribution func- 
tion for the active sites and F(t) represents 
the normalized transient data. Soong et al. 
(18) later confirmed that the types of metha- 
nation sites work in parallel, even though it 
could not be distinguished if and how they 
might be connected. Although Scott (16) 
showed that he could satisfactorily recover 
his particular f (k) ,  the difficulty with his 
method is that it limits the distribution's 
shape to that of bimodal Gaussians. In addi- 
tion, there are risks in using many-parame- 
ter models to fit inexact data that do not 
entirely obey the underlying model criteria 
because the extracted parameters and, con- 
sequently, their description of any phenom- 
ena may not be correct, even though the fit 
is good. These issues are pointed out be- 
cause a priori it is not clear what form f (k)  
has for a specific catalyst in a particular re- 
action environment. For the determination 
off(k)  by the method of Scott, these con- 
cerns become even more important since 
the methanation sites react to perturbations 
of the steady state (19). In addition, the in- 
herent integral nature of his reactor was also 
not addressed. 

For isotopic transients obtained during 
the methanation reaction and assuming Eq. 
(3), de Pontes, Yokomizo, and Bell (5) 

(DYB) introduced a method based on a 
shortcut in an eigenfunction-based transfor- 
mation technique devised by McWhirter 
and Pike (20) to arrive a posteriori at nonpar- 
ametric reactivity distributions of the active 
methanation sites for their ruthenium cata- 
lysts and the nickel ones of Soong et al. (18). 
The use of nonparametric methods that do 
not assume a specific functional form forf(k) 
is preferred over modeling if the problem at 
hand is not too ill posed due to excessive, 
random measurement noise. Even so, the 
DYB method in particular has certain com- 
promises or weaknesses, some of which are 
inherent to McWhirter and Pike's tech- 
nique. Thus, for example, only a few points 
at a time (four in Ref. (5)) are used in k-space 
to transform the data and assemble the reac- 
tivity distribution through "retracing." Sta- 
bilization of the transformation is based on 
certain postulates about f(k) rather than on 
knowledge about R(t). However, the physi- 
cal nonnegativity requirement off(k) is not 
used to constrain the problem. Space re- 
strictions prohibit a lengthy discussion; 
however, it should be noted that the afore- 
mentioned difficulties are essentially due to 
a nonoptimal use of information about the 
problem at hand. It might be expected, then, 
that a method that properly addresses them 
would improve the solution. 

In this paper we describe a rigorous 
method to determine nonparametric reactiv- 
ity distributions from isotopic transients ob- 
tained in situ during steady-state reaction. 
Our method (henceforth referred to as the 
T-F method) is based on a constrained, stan- 
dard Tikhonov regularization of first-kind 
Fredholm integral equations (e.g., Eq. (3)) 
using a heuristic extension of an a posteriori 
rule devised by Butler et al. (21) to deter- 
mine the optimal amount of smoothing 
needed during the transformation. The ap- 
proach that Butler et al. (21) used to select 
the optimal amount of smoothing for the 
integral inversion has often been applied 
successfully in several other disciplines 
(22-28). Most other nonparametric methods 
that may be developed to estimate reactivity 
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distributions do not have such an extensive 
record of practical use (29). Comparisons 
between the DYB and T-F methods are re- 
ported for the deconvolution of synthetic 
data derived from known bimodal reactivity 
distributions. The effects of several experi- 
mental difficulties--such as random noise 
and improper background subtraction--on 
the recovery of the reactivity distributions 
by the T-F method are also discussed. Ex- 
traction of nonparametric reactivity distri- 
butions will be illustrated with real data de- 
rived from isotopic transients obtained 
during steady-state methanation over a 
Ru/SiO2 catalyst. Care must be taken in the 
assessment of experimentally obtained iso- 
topic transients to ensure that extraneous 
effects such as gas-phase holdup, diffusion, 
or readsorption are negligible or properly 
accounted for in order for estimated reactiv- 
ity distributions to be meaningful. There- 
fore, some critical issues in the evaluation 
of observed, experimental transient decays 
are also discussed. 

2. METHODOLOGY 

2.1. Numerical  

For methanation in a well-mixed reactor, 
to arrive at Eq. (3) requires that each active 
site on the catalyst (i) obeys first-order ki- 
netics and that these sites work (ii) in paral- 
lel and (iii) independently. Of these assump- 
tions, Soong et al. (18) showed that the one 
requiring nonconnectivity is perhaps the 
weakest. Equation (3) can be compared to 
the general form of Fredholm integral equa- 
tions of the first kind, 

F(t) = Yo h( t ,k) f (k)  dk, (4) 

or simplified in terms of linear operators 

F = H f =  H f  ° + e, (5) 

where h(t, k) is a nondegenerate kernel, f°(k) 
is the true distribution function in some con- 
vex domain D, and f ( k )  is the estimate of 
f°(k)  due to the presence of indeterminate 
error, e, in the experimental data, F(t). 
Thus, in our case, the kernel contains the 

inherent transient kinetic properties of each 
active site, 

h(t,k) = ke -kt, (6) 

which is essentially Eq. (2) rewritten. In 
practice F(t) is inexact because of random 
noise, and the problem of determining the 
density function f°(k) becomes ill 
posed--i .e. ,  in case of excessive experi- 
mental noise there may be more than one 
solution, f(k), that will satisfy the problem. 
Therefore, in the case of inexact data it be- 
comes necessary to somehow stabilize the 
integral inversion to limit distortions off(k), 
the estimate of f °(k), due to measurement 
error. One popular way to do this is by the 
standard Tikhonov regularization (30), 
which constructs an objective functional 
that works to minimize the sum of squared 
residuals and, at the same time, attempts to 
control the smoothness off(k) through a so- 
called smoothing term. In particular, Tikho- 
nov chose to rewrite the inversion problem 
as the minimization of the functional 

d~(f) = t l n f -  FII 2 + ,~llfll 2, ,~ > 0, (7) 

where a is a scalar smoothing parameter. It 
should be noted that for the standard inver- 
sion problem (i.e., no second term) there is 
severe undersmoothing--that is, large oscil- 
la t ions- in  the recovered estimate f. Thus 
by having minimization of Ilfll as part of the 
objective functional, one is provided (via 
proper selection of o0 with a control on the 
variations in f during the transformation of 
the data. For a particular a, the directional 
derivative of ~ ( f )  is 

V~b,(f) = ht(k)(Hf - F) + a f (k) ,  (8) 

where h(k), Hf, and F are vectors in ~n (n- 
dimension real space), n is the number of 
data points, and superscript t signifies the 
transposed matrix. When the directional de- 
rivative of qb( f )  is equated to zero, the last 
equation can be rewritten for simplification 
to show that for a given o~ the minimum 
of the functional is located at the f~ that 
satisfies 
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f ( k )  =- max(0, ht(k)c), (9) 

( H f -  F) + ctc = 0, (10) 

where Eq. (9) includes the physical nonneg- 
ativity requirement forf(k). In addition, c E 
A n is defined by Eq. (9) and is not a function 
of k. By defining the integral operator M 
with elements M i j ( h t c )  =- fhtc>o h i ( k ) h j ( k )  dk  
(21), which essentially operates on the do- 
main or region where the integrand is posi- 
tive, Eq. (10) can by simple substitution be 
rewritten to show that the minimum o f f , ( f )  
is located at 

c = ( M  + a I ) - l F ,  (I1) 

where I is the identity matrix. Thus, in our 
implementation (Appendix A) to invert the 
Fredholm integral at a given o~, the vector 
c identifies the minimum of the functional 
qb(f)  and from this c, the distribution func- 
tion f~(k) can be found using the definition 
in Eq. (9). 

The next problem is to specify a rule to 
find the optimal smoothing parameter that 
yields the best approximation of the true 
i f ( k ) .  A reasonable criterion is to use the 
discrepancy principle as Morozov sug- 
gested (31) and choose as optimal the a that 
minimizes the square error between f0 and 
its current estimate f ,  ; i.e., minimize 

SE(~) =- fo (f~(k) - f°(k))2 dk 

- - I l L - f ° 7 ,  (12) 

where SE has been expressed both in func- 
tion and operator notation and D is the ap- 
propriate integral domain. Butler et al. (21) 
showed that by using the functional *~(f),  
given the fact t h a t f  ° is not expected to con- 
tribute to the square error, minimization of 
the true square error be tweenf  ° and its esti- 
mate f~ is similar to the minimization of the 
auxiliary function of the squared error 

SE*(a) ~ IlL - f°ll2 - IIf°ll = 
= f t f~  _ 2ftf0,  (13) 

which through straightforward linear alge- 
bra was shown (21) to be equivalent to 

SE*(a) = U T M T F  - 2 U T F  + 2etc, (14) 

where T - (M + t~I) -1. Their treatment of 
the measurement error in the last term of 
the last equation resulted in a rule that lo- 
cates the optimal t~ at the minimum of an 
approximation of SE*, 

SE*(a) ~ F t T M T F  - 2F tTF  

+ 2 v nllcll, (15) 

where the scalar cr is the standard deviation 
in the experimental measurements. Thus, 
this smoothing rule does not depend on 
properties of the solution f ( k ) .  Unfortu- 
nately, the last term in Eq. (15) estimates 
the contribution of the noise rather conser- 
vatively, which may often lead to over- 
smoothing. 

Butler et al. (21) pointed out that in terms 
of the recovery of the shape off(k)  over- 
smoothing is preferred to undersmoothing; 
even so, we found that for our kernel (Eq. 
(6)) the level of oversmoothing was unac- 
ceptable. Some tests showed that in our case 
in general the most faithful recovery oc- 
curred at o~'s several orders of magnitude 
smaller than the %pt found using the smooth- 
ing rule by Butler et al. Several other au- 
thors (22-25) have also encountered this 
problem of excessive smoothing. In an ap- 
plication to obtain selectivity coefficient dis- 
tributions from ion-exchange adsorption 
isotherms, Triay and Rundberg (23) through 
numerical experimentation noted that the 
actual optimal smoothing parameter was 
usually about one-tenth of the Otop t calcu- 
lated by the rule of Butler et al. Accordingly, 
their modified smoothing rule contains an 
empirical factor of 0.1 applied to the optimal 
a of Butler et al. Earlier, Thigpen et al. (22) 
had arbitrarily used this one-tenth rule to 
recover retardation-time spectra from creep 
data, and they commented that an objective 
rule to locate the true aop t was needed to 
better warrant proper interpretation of dis- 
tribution functions extracted from experi- 
mental data. 

We decided that it might be possible to 
get a more reasonable estimate of the contri- 
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bution of the experimental noise to the 
square error. The last term in the rule of 
Butler et al. (Eq. (15)) was restored to the 
more general 2etc. Then, whenever a solu- 
tion f~(k) had been determined for a given 
smoothing parameter by minimization of the 
constrained form of the functional in Eq. 
(7), we evaluated the right-hand side of Eq. 
(4) to observe the F~(t) represented by this 
f~. From this feedback, e was estimated by 
%, the vector difference between F and F~. 
That is, our new smoothing rule is 

SE*(O/) -~ F t T M T F  - 2F tTF  + 2~tc,  (16) 

where % = F - F~, and F~ = Hf~. It should 
be noted that, since there is an a posteriori 
estimate of [Jell (i.e., o-v%n), it may not be 
necessary to rely entirely on % to assess the 
contribution of e to SE*. Rather, it would 
be necessary to estimate only ~p, the angle 
between e and c, using %, the O/-estimate of 
the experimental error. That is, 

SE*(a) -~ F t T M T F  - 2F tTF  

+ 2~C~n(~tc/ll~ll). (17) 

Thus, in essence, at every O/-iteration this 
rule would attempt to estimate the current 
direction of the indeterminate error before 
evaluating the angle of the inner product 
I[~ll Ilcll cos  ~. Butler et al. (21), on the other 
hand, conservatively fixed cos ~p at 1 so that 
their estimate of the contribution of the inde- 
terminate error to SE* would be as large as 
possible. 

The rule of Eq. (16) estimates both the 
direction and the size of the error using the 
currentf~ to fit the data and does not compel 
the experimenter to rely on a separate 
method to determine It 11. Heuristically, it is 
also clear that if thef~ estimate is poor, this 
will lead to a poor fit of the data resulting in 
large I1 11, which in turn, through Eq. (16), 
would tend to increase the value of SE*, 
the auxiliary function of the squared error. 
Several numerical tests have shown that of 
the several forms of Eq. (14) that were con- 
sidered, the rule of Eq. (16) was the most 
adequate one for Eq. (6); that is, the most 
faithful recovery of the reactivity distribu- 

tion coincided with the O/op t calculated from 
this new rule. Algorithmic details of the im- 
plementation of our method are in Appen- 
dix A. 

Compared to the T-F method, the DYB 
method is somewhat indirect (see Appendix 
B). For that method the problem is viewed 
as having the Laplace kernel 

h(t ,k)  = e -kt, (18) 

and, using McWhirter and Pike's (20) trans- 
formation technique for Laplace-like ker- 
nels, Eq. (4) is solved for kf(k) .  Thus to 
determinef(k), this solution must be divided 
by k. The DYB method basically reduces 
the problem to a multiple regression (5). 

It was convenient to implement the DYB 
method in a Lotus 123 worksheet using 
macro commands. Using 8-digit precision in 
floating-point arithmetic, it was run on a 12- 
MHz AT-bus computer equipped with a 
math coprocessor. Since the T-F method 
is computationally more demanding, it was 
programmed in C (MIPS cc under Ultrix-32 
3.1D) and, using 16-digit precision, the opti- 
mized code was executed on RISC-based 
workstations (DECstation 2100). 

2.2. Exper imenta l  

Details on the preparation procedure of 
the catalyst have been described elsewhere 
(it is catalyst K00 in Ref. (36)). In short, it 
was a chlorine-free, 3 wt% Ru/SiO~ catalyst, 
which had been reduced in hydrogen at 
400°C. 

To arrive at reactivity distributions it is 
critical to properly acquire the steady-state 
isotopic transients. After in situ H2 reduc- 
tion at 400°C, isotopic methanation tran- 
sients of the carbon were measured during 
steady-state CO hydrogenation over the cat- 
alyst, using a quartz, tubular fixed-bed mi- 
croreactor (3-mm i.d.) differentially oper- 
ated at 215°C, ca. 120 kPa, and a HJCO flow 
of 30/10 ml/min. The space velocity through 
the 60-mg, porous catalyst bed was main- 
tained at about 80 s-l .  The ~2CO gas con- 
tained a 5.15% trace of argon. After the iso- 
topic switch, 02CO + Artr~c e) + HJ/1sCO 
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+ H2, the effluent was continuously mass- 
analyzed (quadrupolar Extrel) to obtain the 
isotopic-transient decays. Further experi- 
mental details are described elsewhere (37). 

In a recent paper Happel et al. (38) have 
rightly expressed concerns about what they 
perceived as the sometimes inappropriate 
analysis of steady-state isotopic transients 
obtained using plug-flow reactors. They em- 
phasized that, in general, transients ob- 
tained using plug-flow reactors, even when 
operated at differential conversion, cannot 
be treated with formalisms derived for well- 
mixed reactors (CSTR's). In this study, a 
plug-flow reactor was used, and the re- 
sulting transient data were analyzed with 
expressions similar to those derived for 
well-mixed reactors because the system 
could be viewed as approximately gradi- 
entless. Thus, the reaction was maintained 
at differential conversion levels. Since we 
also used a differential catalyst bed, it is 
clear that in the differential equation system 
describing the mass balances of the reacting 
species, derivatives with respect to the axial 
position in the reacting bed can be disre- 
garded. 

For our reaction system the differential- 
bed approximation was valid because the 
space velocity was so high that the average 
contact time for the flow with the reacting 
bed (bed lengths of ca. 1.0 cm) was less than 
1/80 s which is much shorter than any of the 
surface residence times measured. Further- 
more, the effect of reactor dead space can be 
effectively removed because the presence of 
a trace amount of the inert Ar in one of 
the streams to be switched allowed us to 
measure the gas-phase holdup (r~r) and to 
account for the delay time (induced by the 
dead space) between the switch and the on- 
set of the transients. Thus, in our system, 
no delay was observed between the onsets 
of the Ar and methane transient decays. The 
gas-phase holdup measured using Ar was 
typically about 3 s. Since it can be assumed 
that the surface lifetime of irreversibly ad- 
sorbed CO is short (39-41), the gas-phase 
holdup can be subtracted from the decay 

time of methane (TCH4) to determine the av- 
erage surface residence time of the CHx spe- 
cies terminating as methane (~'CH4)" 

For subsequent deconvolution of meth- 
ane transients using Eq. (3), it is also neces- 
sary to remove the effect of the gas-phase 
holdup on the shape of these transients, es- 
pecially when the flight time is considerable 
compared to the methane decay time. Re- 
cently, using Laplace transfer functions, 
Nwalor (42) showed that for gradientless 
systems the true reaction transient F of a 
product species, corrected for gas-phase 
holdup (7"~r), can be extracted from the over- 
all transient decay as 

F(t) = F*(t) + ~'*r(dF*(t)/dt), (19) 

where F* is the observed isotopic transient 
decay. Since the surface holdup for methane 
was relatively short, Nwalor's method was 
used to correct observed methane transients 
before the transformation to extract f(k).  

3. RESULTS AND DISCUSSION 

3.1. The T - F  Method 

To test the precision of the T-F method, 
its effectiveness in recovering synthetic, 
Gaussian reactivity distributions was evalu- 
ated. The original, synthetic bimodal 
Gaussian distribution, gl(k), in Fig. 1 (solid 
line) has its peaks centered at k = 0.03 and 
0.1 s-1 and both have a standard deviation 
of 0.01 s -~. This would correspond to two 
equally sized pools of active sites with aver- 
age reactivities of 0.03 and 0.1 s -1. Using 
Eq. (4) with the kernel in Eq. (6), a direct 
forward transformation was applied to this 
bimodal Gaussian to yield a synthetic tran- 
sient consisting of 40 points on the time in- 
terval [0-60 s]. Using a random-number 
generator, noise was added to this "exac t"  
transient, Gl(t), at different relative stan- 
dard deviations (o-re1). Subsequently, the al- 
gorithm described in Appendix A was used 
with the rule of Eq. (16) to assess the quality 
of the T-F recoveries of the original gl from 
these synthetic transients. 



684 HOOST AND GOODWIN 

f 
M 

0.0 0.1 

.i 
1 I ' I , I 

012 0 . 0  0.1 0 .2  

rate c o n s t a n t ,  I / s  

FIG. 1. Effect of random measurement noise on T-F 
recoveries (dot-dash lines) of bimodal Gaussian (solid 
lines); see text. Added noise (O-tel): (a) none, (b) 2.5%, 
(c) 5%, and (d) 10%. 

band; but as the level of noise becomes con- 
siderable, the T-F solutions for a given O're 1 
can become very dissimilar and may eventu- 
ally in some cases become seriously dis- 
torted as can be seen in Fig. ld. 

Since due to experimental complications 
it is not always trivial to categorically deter- 
mine the background of an isotopic tran- 
sient, the effect of incorrect background se- 
lection on the quality of T-F recoveries of 
reactivity distributions has also been con- 
sidered. In order to do so, synthetic tran- 
sients were created from the exact normal- 
ized transient, G1, where the background 
for the new normalized transients was se- 
lected with respect to G~(60) according to 

Figure la shows that the recovery using 
the exact transient is quite satisfactory. The 
peak locations are estimated successfully 
but the peak widths of the T-F estimate are 
slightly broader, indicating that the solution 
is somewhat oversmoothed. However, the 
relative areas under the low- and high-activ- 
ity peaks of the recovered distribution are 
49 and 51%, respectively, which indicates 
that the average fraction of each pool of 
active sites is estimated accurately despite 
a modest level of oversmoothing. 

Figures lb, lc, and ld each show some 
typical T-F recoveries of g~, the original 
distribution, when different levels of ran- 
dom noise (O're I = 2.5, 5, and 10% of G(t), 
respectively) were added to the exact tran- 
sient to simulate the effects of indeterminate 
measurement error. For each level of ran- 
dom noise several synthetic transients were 
created and deconvoluted. Thus, Fig. 1 
shows that as the indeterminate error in the 
measurement of the transient increases the 
peak width of the recovered distribution in- 
creases. This peak broadening happens be- 
cause in the presence of considerable noise 
more smoothing is needed to stabilize the 
integral inversion and prevent the problem 
from becoming too ill-posed. For small 
amounts of random noise (Fig. lb) the fam- 
ily of T-F recoveries remains in a narrow 

Gl(t ) - (B/IOO)GI(60) 
F(t) = GI(O ) _ (B/IOO)GI(60)* G~(O), (20) 

where B is the percentage deviation for the 
background of the new transient with re- 
spect to Gl(60). To illustrate the differences 
in these new transients they have been pre- 
sented on a semilogarithmic basis in Fig. 2. 

The T-F solutions using the transients 
shown in Fig. 2 are depicted in Fig. 3. From 
this figure it can be seen that modest under/ 
overestimation of the isotopic transient's 
background does not appear to lead to seri- 
ous distortions of the T-F estimates of gl 

~ 
0.1 "~""" 

\ 
\ 

\ 
0.01  , ' , ) , 

0 2 0  4 0  6 0  
time, (s) 

FIG. 2. Background selections for transients from 
bimodal Gaussians; see text. Specification w.r.t. 
G1(60): (a) correct, (b) -100%, (c) +25%, and (d) 
+75%. 
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f 1, • I I ' I I l I I I 

0.0 0.1 0.2 0.0 0.1 0.2 
rate constant, i/s 

T A B L E 1  

Comparison of Peak Characteristics of Non- 
parametric Estimates of the Mixed-Band Bimodal 
Gaussian 

Method kl Xl k2 X2 
(s-b (s -I) 

Original Gaussian 0.012 0.50 0.082 0.50 
T - F  method 0.012 0.54 0.084 0.46 
Self-consistent DYB 0.021 0.54 0.075 0.46 
Biased DYB method 0.016 0.47 0.070 0.53 

FIG. 3. Effect of incorrect background estimation on 
T-F recoveries (dot-dash lines) of bimodal Gaussian 
(solid lines); see text. Background specification w.r.t. 
GI(60): (a) correct, (b) -100%, (c) +25%, and (d) 
+ 75%. 

(Fig. 3c). On the other hand, poor back- 
ground estimation leads to severe distor- 
tions (Figs. 3b and 3d) in the T-F estimates, 
and especially gross underestimations may 
quickly lead to nonrepresentative recover- 
ies of reactivity distributions. 

The T-F method was also used to attempt 
to recover a bimodal Guassian reactivity 
distribution function for which the peak 
shapes were not similar. This bimodal 
Gaussian, g2(k), is shown in Fig. 4 and has 
its peaks located at 0.012 and 0.082 s- ~, with 
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FIG. 4. T-F recovery (dot-dash) of mixed-band, bi- 
modal Gaussian (solid): (a) no added noise; (b) 2.5% 
random noise. See text for details. 

standard deviations of 0.002 and 0.015 s -~, 
respectively. Such a distribution would cor- 
respond to a situation in which the low- and 
high-activity pools would each comprise 
50% of the total number of active sites. The 
distribution g2 was then integrated ac- 
cording to Eq. (4) using the kernel of Eq. (6) 
to arrive at the "exact"  transient, G2(t), to 
which different levels of random noise could 
be added. 

Figure 4a shows the recovery of the exact 
transient G2 by the T-F method. Figure 4b 
shows that reasonably low levels of added 
random noise (trre I = 2.5%) in the transient 
again did not seriously affect the T-F estima- 
tion of g2(k). As can be seen in Table 1 
the peaks in the original reactivity spectrum 
were located quite accurately as was the 
relative area of each peak (x). For the exact 
recovery (Fig. 4a), the shape of the recov- 
ered high-activity peak is quite faithful but 
the recovered low-activity peak shows con- 
siderable broadening because of too much 
smoothing. This broadening of the narrow 
peak occurs as a natural side effect of the 
regularization approach. That is, when try- 
ing to recover a mixed-band spectrum with 
very narrow and very wide bands, the ten- 
dency is for regularization methods to 
oversmooth the narrow bands. This hap- 
pens because narrow bands occupy a rela- 
tively small domain so that the contribution 
of the much broader (smoother) bands to the 
regularization process will dominate since 
the latter require more smoothing for their 
description. Of course, alternatively, 
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FIG. 5. Exact  DYB recoveries (dot-dash) of mixed- 
band, bimodal Gaussian (solid): (a) "self-consistent" 
DYB estimate; (b) "b iased"  DYB estimate. See text 
for details. 

mixed-band spectra may be addressed with 
nonsmoothing, nonparametric methods, but 
it should be kept in mind that for such non- 
regularization methods, the transformation 
often becomes much less stable (29). 

3.2. Comparison o f  the T-F and 
D YB Methods 

To compare the effectiveness of the T-F 
and DYB methods in determining nonpara- 
metric estimates of reactivity distributions, 
their accuracy in recovering a known bi- 
modal Gaussian distribution gz(k) described 
earlier was tested. Figure 4a shows the T-F 
recovery using the exact transient Gz(t), and 
Fig. 5 shows exact DYB recoveries. As ex- 
plained by de Pontes et al. (5), the nonpara- 
metric DYB method is valid for 114 -< 0.02, 
where at the same time [le]l may also be used 
to estimate the parameter COma x , which dic- 
tates the spacing for sets of k in the reactivity 
domain (see Appendix B). Since for the ex- 
act transient NI is essentially zero, the ap- 
proach to assemble the recovery in Fig. 5a 
was to choose a OJma x to space the values of 
k and then to calculate an average I1  11 from 
the fits of the sets of solutions (correspond- 
ing to the different sets of k) to the transient 
G2. This procedure was then iterated until 

II dl- ~k/'n'/c°sh('n't°rnax) < 10-3-  (21) 

This approach, which essentially tries to 
control the proper spacing for the sets of k 
based on a current estimate of the error, is 
referred to as the "self-consistent" DYB 
method. 

Figure 5a shows that the estimate using 
the self-consistent DYB approach is not as 
faithful as the one obtained by the T-F 
method. On the other hand, even though the 
high-activity peak is seriously skewed, this 
DYB recovery seems to have the correct 
amount of smoothness. Table 1 shows that 
although the relative fractions of the area 
under the peaks were estimated quite rea- 
sonably, the estimation of the average reac- 
tivity of these peaks cannot be considered 
satisfactory. 

It is estimated that depending on certain 
run parameters the T-F calculation may take 
roughly 500-1000 times longer than the 
DYB inversion. Since the DYB method is 
computationally far less demanding than the 
T-F one, it was investigated to see if the 
former method could in fact recover distri- 
butions faithfully, perhaps at other values of 
C0ma x . That is, the possibility was considered 
that our criterion for selecting OJma x (Eq. (21)) 
may not lead to optimum error estimation. It 
was believed that if the DYB method could 
indeed accurately recover reactivity distri- 
butions at some other (Oma x value, then a new 
criterion could possibly be formulated to se- 
lect this optimum condition. The DYB in- 
version was, therefore, also done at other 
values of (.Oma x . In particular, for one DYB 
recovery, the choice of ~max was biased to 
match the maximum of the low-activity peak 
of the recovery with the one of the original 
distribution. This DYB recovery is shown 
in Fig. 5b and is called the "biased" DYB 
estimate. 

The biased DYB estimate indicates that 
the DYB method was not able to determine 
a satisfactory recovery of the original distri- 
bution using the exact transient (without any 
added noise). Table 1 shows, however, that 
the average fractions of the pools were still 
reasonably estimated. Figure 5b shows that 
recovery of the shape of the low-activity 
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peak is excellent but that the underestima- 
tion of the location of the high-activity peak 
in the reactivity spectrum has become even 
more serious than in the case of the self- 
consistent DYB estimate. 

The comparison of the DYB and T-F 
methods shows that because of the afore- 
mentioned improvements, the latter one is 
an important alternative of estimating reac- 
tivity spectra when the computational cost 
can be tolerated. It should be pointed out 
that the effectiveness of smoothing rules 
such as the heuristic one of Eq. (16); for a 
given first-kind Fredholm problem, will be 
at least partially related to the convergence 
rate of Morozov's discrepancy principle 
(32). That is, while smoothing rules based 
on Morozov's principle have been success- 
ful in many instances (22-28), Morozov's 
principle does not lead to optimal conver- 
gence rates (33). It may be expected that 
smoothing rules based on more adequate 
discrepancy principles such as that of 
Gfrerer (33) would be more effective in 
solving regularization problems (especially 
those with "difficult" kernels), but at the 
cost of greater computational complexity 
(34, 35). 

3.3. SSITKA o f  Methanation over 
R u / S i O  2 

The nonparametric T-F method was ap- 
plied to determine the reactivity distribution 
of methanation over a 3 wt% Ru/M5-SiOz 
catalyst during Fischer-Tropsch reaction at 
the operating conditions mentioned in the 
Experimental section. As mentioned there, 
care was taken to remove the effect of gas- 
phase holdup from the observed isotopic 
transient of methane. At the prevailing reac- 
tion conditions, steady-state product analy- 
sis showed that the methane selectivity was 
49.1% and that the methanation rate was 
2.5/zmol/g s. In addition, SSITKA revealed 
that the methane-bound surface carbon 
spent an average of 4.2 s on the catalyst 
surface in a steady-state abundance (Ncu4) 
of 9.4/xmol/g, which would correspond to a 
coverage of about 8.6% of the surface Ru 

I 
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~2 
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r a t e  c o n s t a n t ,  l / s  

FIG. 6. Reactivity distribution obtained by SSITKA 
of methane-destined carbon during FTS over a 3 wt% 
Ru/M5-SiO2 catalyst at 215°C, 120 kPa and H2/ 
CO = 3. 

atoms (based on static hydrogen chemisorp- 
tion (36)). 

Using an arbitrary multiple regression 
with a sum of four exponentials, the average 
noise in the measurement of the transient 
was estimated at 2.2% with respect to the 
signal. As discussed earlier, the nonpara- 
metric T-F method may be expected to re- 
sult in reasonable estimates o f f  ° for such 
low levels of experimental noise. To solve 
the integral inversion in a reasonable 
amount of time, for the actual transforma- 
tion 36 representative data points of the gas 
phase-corrected isotopic transient were 
used to obtain 201 points logarithmically 
spaced in the interval k E [0.005, 10 s ~]. 

The result of the calculation is given in 
Fig. 6, where the reactivity spectrum has 
been rescaled to reflect that the absolute 
abundance of methane-destined surface car- 
bon is N. As mentioned before, the smooth- 
ness of the T-F estimate is a direct conse- 
quence of the regularization approach and 
any random experimental error would be 
primarily reflected as uncertainty about 
peak locations of the true reactivity func- 
tion. For the current isotopic transient, such 
uncertainty is expected to be modest since 
the noise in the transient measurements is 
estimated to be small (see Fig. 1). From the 
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reactivity spectrum in Fig. 6, two pools of 
active carbon can be distinguished and, as is 
typical (5, 18), they are assigned to a highly 
active a carbon (C1~) and a less active fl 
form (Cl~). The figure also shows that at the 
prevailing reaction conditions the relative 
size (x) of the methane-destined CI~, pool 
was somewhat larger than that of C~, with 
CH 4 being produced on average about 14 
times faster from C~ than from C~a. The 
T-F estimate of the reactivity spectrum is 
qualitatively similar to the DYB estimate 
by de Pontes et al. (5), who studied the 
methanation reaction over Ru/SiO 2 at much 
milder reaction conditions, and is in 
agreement with other studies that have es- 
tablished that there are two active surface 
carbon pools involved in the formation of 
methane (43-46) .  

4. CONCLUSIONS 

A new method to extract nonparametric 
estimates of pseudo-first-order rate con- 
stant distributions from in situ isotopic 
transient kinetic data (the T-F method) 
has been presented and validated. It was 
shown that the method based on Tikhonov 
regularization could faithfully recover reac- 
tivity distributions even when reasonably 
small amounts of random noise were pres- 
ent. Similar recovery tests also showed 
that proper background selection is critical 
for the determination of reliable reactivity 
spectra. It was shown that in the case of 
mixed-band spectra containing very narrow 
and very wide bands, the narrow ones 
may suffer excessive oversmoothing. A 
comparison of the T-F method to the non- 
parametric method of de Pontes et al. (5) 
showed that the new method in general 
can recover reactivity distribution func- 
tions more reliably but at a significantly 
greater computational expense. The T-F 
method was demonstrated using a gas- 
phase-corrected isotopic transient of meth- 
ane obtained at differential reaction condi- 
tions during CO hydrogenation over a 3 
wt% Ru/SiO 2 catalyst. The resulting reac- 
tivity spectrum revealed two pools of ac- 

tive surface carbon, consistent with previ- 
ous results of others. 

APPENDIX A 

The constrained search technique used 
here to determinef~(k) at a given a from Eq. 
(7) is very similar to that of Butler et al. (21), 
but there are some important differences. It 
is basically a q u a s i - N e w t o n  method (47) to 
minimize the quadratic functional 

0 = 0.5ct( M + a I ) c  - ctF (A1) 

with derivatives 

and 

~'(c)  = ( M  + a I ) c  - F (A2) 

0"(c) = (M + a I ) ,  (A3) 

which represents the transformation prob- 
lem at hand. 

Iterations are according to 

Ci+ 1 : C i - -  8 A ,  (A4) 

where the search direction is either 

A = (~b")-l~b ' (A5) 

or, as suggested by Butler et al. (21), 

A = ( M  + hI ) -~O ' (A6) 

when a is small, h > 0 is fixed to allow 
an estimate of the search direction when 
inversion of ~b" is too difficult (21). The opti- 
mal step size 8 is determined by a line search 
(48) along the direction A. The Newton 
search is typically continued until 

[I(M + a I ) c  - FI]_< 10_6 (A7) 
 to, --- IIFII 

Using this technique, convergence can be- 
come extremely slow, particularly if a is 
small (21). When this problem is encoun- 
tered, the Newton search is terminated after 
about 150 iterations, provided that O-to I is 
small. 

The new rule in Eq. (16) is used to deter- 
mine the proper level of smoothing for the 
integral transformation. Since the SE* func- 
tion is convex, a logarithmic golden-section 
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search (49) is used to locate the Otop t that 
minimizes it. The search for Odop t is stopped 
when the interval of  uncertainty for log~0 a 
is less than 0.1. 

APPENDIX B 

For completeness, the essential equations 
necessary for implementing the DYB 
method are repeated here from Ref. (5) us- 
ing our notation. Equation (3) can be rewrit- 
ten in the form of a least-squares multiple 
regression 

M 

R(t) = ~ ame -kin', (B1) 
m = l  

where M is set to 4. The a,~ are the regres- 
sion coefficients that contain the estimate, 
f(k), of the reactivity distribution function 
according to 

"N" 

a m = N k 2 f ( k m ) ,  (B2) 
~max 

where N is the abundance  of surface inter- 
mediates.  The km are related by 

km+ 1 = k l e  m~r/~°max, (B3) 

and the distribution can be assembled  by 
retracing using different, arbitrary values of 
kl. The spacing for each set of k m is con- 
trolled by COma x, which may be found from 
an est imate of  the measuremen t  error  as 

I1 11 ~ X/Tr /c°sh(~ '¢°max) .  (B4) 

The method requires that II ll <-- 0.02 be satis- 
fied, and e can be es t imated by trX/-n. 
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